首页> 外文OA文献 >A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods
【2h】

A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods

机译:使用代理处理在计算上昂贵的多目标优化问题的调查:非自然启发方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computationally expensive multiobjective optimization problems arise, e.g. in many engineeringapplications, where several conflicting objectives are to be optimized simultaneouslywhile satisfying constraints. In many cases, the lack of explicit mathematical formulasof the objectives and constraints may necessitate conducting computationally expensive andtime-consuming experiments and/or simulations. As another challenge, these problems mayhave either convex or nonconvex or even disconnected Pareto frontier consisting of Paretooptimal solutions. Because of the existence of many such solutions, typically, a decisionmaker is required to select the most preferred one. In order to deal with the high computationalcost, surrogate-based methods are commonly used in the literature. This papersurveys surrogate-based methods proposed in the literature, where the methods are independentof the underlying optimization algorithm and mitigate the computational burden tocapture different types of Pareto frontiers. The methods considered are classified, discussedand then compared. These methods are divided into two frameworks: the sequential andthe adaptive frameworks. Based on the comparison, we recommend the adaptive frameworkto tackle the aforementioned challenges.
机译:出现计算上昂贵的多目标优化问题,例如在许多工程应用中,在满足约束的同时要优化几个冲突的目标。在许多情况下,缺乏明确的目标和约束条件数学公式可能需要进行计算量大,耗时的实验和/或仿真。另一个挑战是,这些问题可能具有凸面或非凸面,甚至具有由帕累托最优解组成的帕累托边界。由于存在许多此类解决方案,因此通常需要决策者选择最喜欢的解决方案。为了应对高计算成本,文献中通常使用基于代理的方法。本文调查了文献中提出的基于代理的方法,其中这些方法独立于底层优化算法,并减轻了计算负担,以捕获不同类型的Pareto边界。对所考虑的方法进行分类,讨论和比较。这些方法分为两个框架:顺序框架和自适应框架。在比较的基础上,我们建议采用自适应框架来应对上述挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号